Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol Methods ; 319: 114759, 2023 May 29.
Article in English | MEDLINE | ID: covidwho-2327796

ABSTRACT

The circulation of certain SARS-CoV-2 variants may have a great impact on the epidemiological status of a geographical area; therefore, it is important that their presence is monitored. Currently, the gold standard method used to identify newly emerged variants is sequencing of either genes or whole genomes. However, since this method is relatively expensive and has a long turnaround time, other rapid strategies should also be employed. The current study aimed to evaluate the performance of the Simplexa® SARS-CoV-2 Variants Direct assay, which is a RT-PCR that determines the variant present in a nasopharyngeal swab sample in approximately two hours. Totally, 527 positive samples for SARS-CoV-2 were analyzed from January until December 2022 and next-generation sequencing (NGS) was used as the reference method. The assay showed high sensitivity, ranging from 94.12 % to 100 %, depending on the variant. The assay also showed high specificity, reaching 100 % for Delta and BA.1 variants, and 99.74 % and 98.67 % for BA.2 and BA.4/BA.5 variants, respectively. Moreover, the assay was able to identify the correct variant category in the presence of any subvariant in the sample. We conclude that the assay can be used to facilitate faster monitoring of circulating SARS-CoV-2 variants, however sequencing cannot be completely replaced, since new variants always emerge, and constant updates are needed, so that the user is able to interpret the melting curve patterns.

2.
Diagnostics (Basel) ; 12(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1887179

ABSTRACT

Background: The global pandemic coronavirus SARS-CoV-2 has a healthcare, social and economic burden. To limit the spread of the virus, the World Health Organization (WHO) urgently called for extensive screening of suspected individuals; thus, a quick, simple, and sensitive diagnostic assay is always in need. Methods: We applied reverse transcription-loop-mediated isothermal amplification (RT-LAMP) for the detection of SARS-CoV-2. The RT-LAMP method was optimized by evaluating two fluorescence amplification mixes and several reaction times, and results were compared to the standard real-time RT-PCR (rtRT-PCR). The assay was validated using 200 nasopharyngeal swabs collected in viral transport media (62 positive for SARS-CoV-2, and 138 negative for SARS-CoV-2 detected by the rtRT-PCR method). The samples were diluted 1:4 in diethylpyrocarbonate (DEPC)-treated water, utilized for RT-LAMP using different singleplex and multiplex sets of LAMP primers (N gene, S gene, and orf1ab gene), and incubated at 65 °C using real-time PCR 7500. Results: Our direct detection with the RT-LAMP protocol showed 100% concordance (sensitivity and specificity) with the standard protocol used for the detection of SARS-CoV-2 nucleic acid. Conclusions: In this study, we set up a rapid, simple, and sensitive RT-LAMP assay for the detection of SARS-CoV-2 in clinical samples. The assay is suitable for point of care detection in public hospitals, medical centers in rural areas, and in transportation hubs.

3.
Viruses ; 12(10)2020 10 20.
Article in English | MEDLINE | ID: covidwho-1305819

ABSTRACT

BACKGROUND: RT-PCR on nasopharyngeal (NPS)/oropharyngeal swabs is the gold standard for diagnosis of SARS-CoV-2 infection and viral load monitoring. Oral fluid (OF) is an alternate clinical sample, easy and safer to collect and could be useful for COVID-19 diagnosis, monitoring viral load and shedding. METHODS: Optimal assay conditions and analytical sensitivity were established for the commercial Simplexa™ COVID-19 Direct assay adapted to OF matrix. The assay was used to test 337 OF and NPS specimens collected in parallel from 164 hospitalized patients; 50 bronchoalveolar lavage (BAL) specimens from a subgroup of severe COVID-19 cases were also analysed. RESULTS: Using Simplexa™ COVID-19 Direct on OF matrix, 100% analytical detection down to 1 TCID50/mL (corresponding to 4 × 103 copies (cp)/mL) was observed. No crossreaction with other viruses transmitted through the respiratory toute was observed. Parallel testing of 337 OF and NPS samples showed highly concordant results (κ = 0.831; 95 % CI = 0.771-0.891), and high correlation of Ct values (r = 0.921; p < 0.0001). High concordance and elevated correlation was observed also between OF and BAL. Prolonged viral RNA shedding was observed up to 100 days from symptoms onset (DSO), with 32% and 29% positivity observed in OF and NPS samples, respectively, collected between 60 and 100 DSO. CONCLUSIONS: Simplexa™ COVID-19 Direct assays on OF have high sensitivity and specificity to detect SARS-CoV-2 RNA and provide an alternative to NPS for diagnosis and monitoring SARS-CoV-2 shedding.


Subject(s)
Betacoronavirus/physiology , Clinical Laboratory Techniques/methods , Coronavirus Infections/virology , Pneumonia, Viral/virology , Virus Shedding/physiology , Adult , Aged , Betacoronavirus/genetics , Body Fluids/virology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Coronavirus Infections/diagnosis , Diagnostic Tests, Routine , Female , Humans , Male , Middle Aged , Molecular Diagnostic Techniques/methods , Pandemics , Pharynx/virology , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL